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Abstract

Innovative firms often operate across many technological areas. In order to move into
these areas, firms require inventors with potential to add specific expertise to the firm. This
paper explores factors that drive firms to innovate in different fields and the role of their
inventors in determining the direction (which field in technology space) and quality (how
much innovation impact) of their idea production. The paper explores these factors in three
steps. First, I construct measures that illustrate a firm or individual’s connection to a given
technology area in USPTO patent data. Second, I use these measures to evaluate which
features of the firm drive the direction of the innovative activity. A firm’s history and its
scientists’ history are each crucial in determining firm’s direction. However, the history of the
specific scientists listed on the patent that provide the best predictor of the technology space
on innovation and innovation quality as measured in citations. Third, I explore the role of the
match between inventors and the firm in determining direction and quality of innovation. The
human capital match, e.g. the inventors at the firm matching with each other, is more important
than the firm inventor match in explaining both direction and quality of ideas produced. When
innovating in new fields, firms have higher quality patents when their new inventors are
more distant from their existing portfolio, suggesting the matching of distant spheres enable
more radical innovation. Overall, this paper indicates the importance of understanding the
composition of inventors at firms as a key issue for innovation.

1 Introduction

Most important advances in technology come from firms. Yet human capital and individual

expertise is the primary building block of idea production and long-run economic growth. While

most work in endogenous growth has addressed idea production through the lens of creative

destruction, there has been less investigation into the factors that determine the details of a
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firm’s innovation choice. In particular, few papers have focused on the interaction of individual

domain specific human capital and firm-specific knowledge in producing new ideas.

This paper explores the dual role of firms and inventors in innovation.1 A key underlying

message is that the match between firms and inventors determines the direction and quality of

innovation. Further, due to data on a firm and inventors patent histories across technologies,

there are empirical methods that can speak to the structure of this match. Constructing firm-

inventor match histories enable a textured discussion of the composition of innovation.

The goal of this paper is to document the factors that shape firms’ decisions on where to

innovate (e.g. what technological area) and how these factors affect their quality of innovation

(e.g. innovation impact as measured by citations). A key contribution of this paper is linking this

decision to the inventor stock of the firm and the inventors on a firm’s patent. I ask two main

questions in this paper. First, I ask what is most predictive of the types of technology a firm

innovates in next – (i) the firm’s technological domain, (ii) the scientists at the firm’s technological

domain, or (iii) the specific inventors on the patent? Second, what role do the inventors play on

the patent more specifically? For instance, how does the inventor-firm matching determine both

the quality and direction of innovation?2

In order to answer these questions, I construct measures of firm history, worker history,

and firm-worker match. First, I discuss technology classes, where the USPTO groups patents

according to their function, and construct measures that illustrate a firm or scientist’s connection

to a given technology class, using patent citations as an indicator of connection between classes.

I discuss firm expansion into fields they have not worked in and how close their new class is to

their past activity, proxying for direction of innovation by USPTO patent class. I then construct

measures of firm-scientist match, which is determined by their overlap in operating in classes

that pull on the same knowledge. I use patent citations to proxy for patent quality. My goal is to

use these measures to attempt to answer the questions in previous paragraph.

Through patents, this paper makes use of the idea of realized regions of production of ideas

and potential regions where firms and scientists operate. Firms produce in certain areas at a given

time t and plan to produce again in period t + 1. This paper provides tools to inform where a

firm might go in technology space given information on past production.

Diversification across technologies is important for a firm’s growth and survival. Without

diversification, firms expose themselves to greater chance of failure given a strong reliance on

specific markets. However, expanding into new areas is challenging. Companies have a dual

issue of building domain expertise outside their primary area and deciding the proper direction

to build at the firm level. Quantifying the forces behind this decision has heretofore been difficult,

as the literature has lacked compelling measures to speak to potential fields a firm may become

1I refer to inventors and scientists interchangeably in this paper.
2Direction is denoted by the patent class a firm innovates in, relative to the patent classes they have been active in.

Quality is measured as patent impact through citations, but also employs a measure from Kogan et al. (2017), who
use stock market surprise measures as indicators for patent monetary value.
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active in.

I find that a firm’s direction into technology classes is dependent on both their technological

history and their scientists’ technological history. The predictive power is strongest in response to

the scientists participating on the patent. If a firm looks to expand into new fields, a scientist in a

different knowledge space than the firm will be more likely to move the firm into new technolo-

gies. Scientists push firms to new frontiers most often early in their tenure. Further, successful

matches that allow for diversification require some similarity of new scientists with the firm’s

existing scientists. This illustrates the vital role of scientists in firm growth and diversification.

Related Literature Ideas are the bedrock of long-run economic growth. Since Romer (1986),

the concept of growth as recipes redirecting matter towards specific uses has been the method

for thinking about technology production. The fact that new ideas knock off older ideas was

classically shown in Schumpeter (1942), who discussed the importance of creative destruction

coming from both large and small firms. Creative destruction was later formalized by Aghion

and Howitt (1992), who stress the importance of certain ideas replacing others, thus the key

role of ideas in firm life-cycles. Because of creative destruction, ideas that generate temporary

monopoly power are crucial to the life-cycle of firms.

Empirically, the most effective way of studying ideas in firms is through patent data.3 Outside

of patent data, it is very challenging to understand the role of ideas in firms since they outside of

patents ideas are highly ephemeral and subtle. Since patents provide a strong incentive to report

the details of an idea, patents generate a great database as noted by Hall et al. (2001).

Klette and Kortum (2004) link the theoretical to data to show how creative destruction at the

firm-level can lead to aggregate innovation. This ties firm dynamics closer aggregate growth.

However, Klette and Kortum (2004) do not focus on the firm’s tradeoff about where to innovate,

on their own product lines or outside. All growth comes from undirected search across any new

product.

Akcigit and Kerr (2018) bring in the idea of “internal” and “external” innovation, where a

firm can build on their existing technology or venture into new technologies. This paper focuses

on firm attempts to build outside of their existing product lines, external innovation. Most

endogenous growth models tend to treat new innovation as undirected, in the sense that firms

attempt to go outside their existing technologies but can land in any technology. This paper

expands on the previous literature by attempting to speak to what drives the direction of new

idea production. This has been less of a focus than the idea that firms direct their production

outward once the returns are large enough.

In introducing a new framework for addressing the forces that shape firm expansion, this

paper speaks to a large theoretical and empirical literature on the process of R&D in firms. Since

Lucas (1988), how human capital interactions have been an important component of economic

3There is a burgeoning field of analysis of scientific publications as well, which is less closely linked to firm
dynamics
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growth theory. This has been linked to firms theoretically in papers (e.g. Bolton and Dewatripont,

1994). Nelson (1982) noted that R&D efficiency comes from firm knowledge stock, and has

modeled this process as one of combining utility with design. Naturally, this question touches

on classic questions related to the boundary of the firm (Coase, 1937) and its interaction with

human capital.

Empirically, researchers have more often focused on the role of R&D in firms rather than

their interaction with human capital. Bloom et al. (2013) explore the role of product markets

and their interaction with a firm’s technological structure. While important, this element misses

the interaction with the individuals’ knowledge stock at the firm. More generally, Dimos and

Pugh (2016) review the literature of the effectiveness of R&D subsidies focusing specifically on

the firm’s reaction. The role of the match with the firm’s inventors has received less attention.

In addressing the importance of firm-worker matching in innovation, this paper speaks to

matching in a more general context, which has received significant attention in the literature at

least since ?. Among others, Jovanovic and Nyarko (1996) and Davis (1997) both investigate the

role for learning and its importance in understanding why individuals switch firms. They both

show how varying understanding of the structure of teamwork and management implies differ-

ent matches depending on the sensitivity to worker ability. The role of learning in this model can

be proxied for by experience across classes that will determine the skill set the individual brings

to the firm.

I also stress the importance of human capital in innovation. The recent focus in understanding

the role of human capital has shifted given the importance of teams in technology (e.g. Wuchty

et al., 2007). The role of the individual in requiring a team in order to produce their idea (e.g.

Jones, 2009) can be extended to firms, whose expertise may not cover what is necessary to bring

an idea to fruition. In addition, it stresses that individuals generally only have a limited breadth

of knowledge which induces them to require teams and firms to produce an idea.

2 Data

I rely on being able to specify the technology space firms are active in (USPTO), where an indi-

vidual has been technologically (Li et al., 2014 and USPTO), and matches between individuals

and firms. In addition, it is necessary to have a dataset that can speak to the value of patents.

There are two different ways of doing this. The first is looking at impact via patent citations from

the USPTO. The second is by using changes in value from patent grant date which comes from

Kogan et al. (2017).

Firms or individuals register for patents in order to guarantee a property right to exclusive

use of an idea for 20 years. Each patent has a corresponding assignee and set of individuals (i.e.

on average a patent has 2.2 co-authors).4 The patent assignee is generally a firm. The individuals

4I drop “garage” patents–patents without firms–in the analysis
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generally work for the firm, and I refer to them as inventors or scientists. Each observation

corresponds to a f irm × scientist × patent over the course of 1976-2002, which yields about 6

million observations.

Patents cite each other indicating a flow of ideas. Patent A will cite other patents B and C as

a way to signify that A builds on B and C. This is often done by the patent authors or the patent

examiner. Citation data provides dual use on both level of impact and specific technological

flows. Patent classes can be linked together through frequency of knowledge flows. Individual

patents have assignee information as well as first and last names of team members. A dataset

from Li et al. (2014) enables me to link the entire career of a scientist to their history. Li et al. (2014)

use a Bayesian algorithm which uses individual names, patent classes, location of inventors, their

firms, and their corresponding co-authors to break down the names associated with patents to

allow for a tracking of the full history of individuals on patents. USPTO patent assignees enable

a measure of a firm’s history in patent production. This generates a dataset that can speak to the

match between scientists and firms.

The data contains patents granted from 1975-2010. I collect citations on all patents, but trun-

cate the end of the analysis since the arrival of the patent is the application year and citations

require more patents to follow on in the future. As such, my regressions and graphs cover

1976-2002.

In addition, Kogan et al. (2017) have produced a dataset that assigns patent value to each

patent based on the change in a company’s stock valuation when the patent is granted. They

do an event study the day of the patent grant to determine value. They base this on taking the

conditional expectation of patent value prior to grant date and then looking at the change in

market capitalization as a result. This measure can get us at the idea of patent value as measured

in monetary terms, but it reduces the sample since these are only for publicly traded companies.

I use USPTO patent classes and subcategories as a measure of histories. There are a total of

about 430 classes that a patent can belong to, with some classes much more heavily populated

than other classes. There are 36 2-digit technology class subcategories set by the USPTO that

contain classes at more coarse level. The classes will be used to specify details at the match level,

whereas subcategories will be used to discuss individual firms’ choices of where to operate.

Classes give a more comprehensive indication of the areas that individuals and firms work in.

However, in the case of discrete choice models, classes add a lot of unnecessary complexity to

computation, while subcategories yield similar overall results.

The class system and citation network allow us to identify technological areas where firms

and scientists operate. This paper works at the subcategory level (with 36 subcategories). This

is because as the class categories get finer firms are absent in most all classes, delivering less

interesting information in discrete choice modeling. Examples of subcategories are Metal Work-

ing, Transportation, Optics, Heating, Pipes and Joints, Organic Compounds, Gas, Drugs, Biotech,

Power systems, Nuclear and X-Rays.
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3 Construction of Measures

There are two types of agents in this economy: scientists and firms. For scientists, I use their

history of patent production. For a firm, there are two ways to measure their location: using

their scientists’ history or using the firm’s history itself. Based on these measures, I then con-

struct measures that indicate the “match” between scientists and firms. I primarily explore these

three measures throughout: scientist level, firm level as collection of scientists, and firm level as

embedded knowledge in the firm.

A scientist or firm has a history across different patent classes. For each scientist on their

nth patent, there n − 1 previous patent productions. Each of the n − 1 observations are in a

patent class. This proxies for the history of production across technologies the inventor has

when meeting with the firm. Similar analytics can be done for the firm.

3.1 Realized and Potential Regions

In order to answer some of the questions posed in the introduction, I build measures to enable a

framework of predicting the direction of a firm’s innovation. In particular, I measure both realized
areas of idea production along with potential areas of idea production. In this section I describe the

different measures that are necessary for the analysis.

3.1.1 Realized Areas of Production

I denote the first measure as Research Concentration, which indicates the presence of a scientist or

firm in a particular patent class. This maps to the realized regions of idea production discussed

earlier.

RCj,c =
# Patents of j in class c

Total Patents of j
where j ∈ {i, f } (1)

Note that for a fixed firm or scientist a, ∑c∈C RCa,c = 1. This initial measure helps us un-

derstand the general areas firms and scientists are working in. Some firms or scientists will be

focused in one or two classes, with high research concentration. Others will be dispersed across

many classes. When a firm produces in an area with a low values of RC, I consider that firm to

be engaged in “external” innovation, advancing into a new field.

3.1.2 Connectivity of Classes

In addition to the Research Concentration measure, I create a measure that quantifies the connec-

tivity of classes through their citations to each other. This enables discussion on the potential areas
of idea production an individual or a firm might engage in given where they start (for instance,

Computer Hardware and Software will have closer links to Information Storage than Agriculture,

Food, and Textiles). Then I can speak to where an individual or firm is more likely to produce
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given only a couple of observations. These measures serve as the link between the realized and

potential areas of production discussed earlier.

These measures express the connection between class A and class B:

cuk(A, B) ≡ #Backward Cites on Patents in A to B
#Total Backward Cites on Patents in A

cdk(A, B) ≡ #Forward Cites on Patents in A to B
#Total Forward Cites on Patents in A

ck(A, B) = ck(B, A) ≡ cuk(A, B) + cdk(A, B)
2

(2)

cp(A, B) = cp(B, A) ≡ #Ac ∩ Bc

#Ac ∪ Bc

Where uk stands for “upstream knowledge” as in this is A citing B. dk stands for “downstream

knowledge” as in this is B citing A. The measure ck in (2) serves as the bedrock for connecting

classes in this analysis. ck indicates an average of how one class is connected to another based on

how the classes use each other in both upstream and downstream connections. ck will be high in

cases where classes are highly codependent, often building on each other. However, k, uk, dk do

not give very different results.

p stands for proximity, and #Ac ∩ Bc are the number of patents that cite both from class A and

B. #Ac ∪ Bc are the number of patents that cite from either class A or B. This measure is taken

from Akcigit et al. (2016).5 All measures are between 0 and 1.

Since I am interested in speaking to firms and scientists’ potential connections across classes,

these measures allow for reasonable insight into where a firm or scientist could go if they have

produced in certain classes, as given by the complementarity and knowledge overlap.

3.1.3 Potential Areas of Production

We can now speak to potential areas of idea production from firms and scientists using the classes

that the areas of produced ideas are connected to. Here, I can take the individual’s experience in

each class and multiply it by the connectivity to other classes. This will give us a distribution of

potential knowledge that can be expressed at both the firm and individual level. The three main

measures:

Knowledge connection of firm f to class B6 :K f ,B

K f ,B = ∑
c=1,...,C

RC f ,c × ck(c, B) (3)

5This measure is used for robustness checks in all the results
6Note that I assume there are C classes

7



Scientist i connection to class B: Si,B

Si,B = ∑
c=1,c=1,...,C

RCi,c × ck(c, B) (4)

Human capital connection of firm f to class B: H f ,B

H f ,B = ∑
c=1,...,C

RC(i∈ f ),c × ck(c, B) (5)

Where the average in (5) is a weighted average depending on the number of a scientist’s

individual patents at the firm in the given year, and each i is a collection of individuals at the

firm. Here I am using an agent’s past production and the connection of that past production to

other classes to speak to their potential area of production by using these indicators to proxy for

the knowledge they pick up somewhere else.

I count a scientist as being at a firm if they have produced at the firm in the corresponding

year or in between patents with the firm.7 This measure is imperfect, since I cannot account for

the scientist’s role at the firm prior to their first patent or after their last patent. Further work

will calculate expected length prior to the first patent to better understand the actual scientist

composition.

These measures provide a distribution for each firm of the potential classes they are involved

in, via a knowledge connection. K f and H f are strongly correlated–overall, the correlation is 0.88.

3.2 Firm Scientist Match

How similar are a firm and scientist in their experience? I evaluate this depending on the defini-

tion of the firm–a collection of ideas (i.e. K f ) or a collection of scientists (i.e. H f ). As discussed

previously, there are two ways to measure the match. One can look at closeness of firm ideas

and scientist. Another way is to use the closeness of firm human capital and scientist. Further,

I can speak to this similarity in realized regions or potential regions.8 Since I am interested in under-

standing the firm’s next move, I will use potential regions of production to understand the match

between scientist and firm.

The construction of the measure of match between inventor and firm follows Jaffe (1986)

who uses this measure to illustrate the degree of match between firms depending on their past

production.

Define vector K f ≡ {K f ,1, K f ,2, ..., K f ,C}, which is a collection of the firm’s idea connection to

classes 1, ..., C, vector Si ≡ {Si,1, Si,2, ..., Si,C} which is a collection of the scientist’s connection to

all classes and vector H f ≡ {H f ,1, H f ,2, ..., H f ,C} which is a collection of the firm’s connection, via

7This requires a scientist not be producing elsewhere
8The results when thinking about the match in terms of realized regions are not significantly different from the

results presented in this paper.
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scientists, to all classes.

Now I can define the match, based on two different measures of firm technology location9:

FMATCH f i =
K f S′i

(K f K′f )
1/2(SiS′i)

1/2

HMATCH f i =
H f S′i

(H f H′f )
1/2(SiS′i)

1/2

FMATCH is the match of firm f to individual i based on the firm’s portfolio history and the

individual’s portfolio history, as discussed above. HMATCH is the “human capital match” which

is the set of scientists at the firm and their collection of patents, matched with an individual.

These measures are in [0, 1] which indicates the strength of overlap in similar regions of ideas.

Note that FMATCH maps to the firm as a collection of ideas while HMATCH maps to the firm

as a collection of scientists.

From their experience in relevant classes, I can speak to the type of expertise firms and

individuals are connected to through their past patents. Then I can look at firm and scientist

overlap when they join for production. When it comes to a firm-scientist match, matches can be

“close” in the sense that firms and scientists operate in similar knowledge networks or “far” in

the sense that they tap into different knowledge networks.

3.3 Dependent Variables

As mentioned in the opening, I am mainly interested in the direction and quality of ideas. I start

with a simple procedure for encoding whether a patent is an advancement into a new field by a

firm or not. The variable “new” measures whether or not the firm is entering a new field (0 for

working on fields in their existing portfolio, 1 for a new field). I define this as the bottom 5th

percentile in realized research concentration10 in technology class of the patent, conditional on

firm age. Controlling for firm size allows for a consistent measure of what it means for a firm to

expand externally. In this case I only think of new exclusively in relation to the firm.

To understand quality, I simply use patent citations in the next five years after a patent was

produced, excluding self-citations from within the firm. More cited patents reflect a higher

quality patent (as noted by Kogan et al., 2017), because it serves as a focal point for further

research and is strongly correlated with monetary values (see Figure 4 in appendix).

9These measures have been used for patent data and technologies in Bloom et al. (2013)
10Recall RC f ,c defined in (1)
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4 Results

I keep in mind the two key questions asked at the beginning as I discuss the results. Which

technology direction do firms innovate in? And how does their match with the scientist feature

in these innovations? The following bullet-points summarize the main results.

1. Firm expansion into new fields is associated with higher patent value, conditional on

knowledge related to the field.

2. A firm’s expansion into new fields is strongly related to their past collection of ideas, and

the ideas of their scientists. The scientists on the focal patent are the strongest predictor of

patent technology class.

3. Firms employ scientists who are technologically distant from the firm’s portfolio to expand

into new technologies.

4. Higher match between firm and scientist on patent match yields lower citation impact

5. Higher human capital match between scientists at the firm and scientists on the patent

yields higher citation impact and more patents produced by a firm-scientist pair.

Overall, both firm-specific knowledge and human capital at the firm are important in deter-

mining direction.11. The scientist on the patent is the best predictor of the firm’s activity in terms

of the quality of its output and its direction. The resulting impact and direction of patents hinge

on the firm, the scientist and the existing human capital at the firm.

The results will be presented mostly in regressions of the following form:

outcome = W ′i β + controls

Where the outcome variable is generally either some indicator of firm direction, i.e. where

a firm produces, or value as discussed in the initial questions in this paper. In order to address

where firms innovate, I stress the realized area of production in tables 3-6. When addressing quality,

I focus on monetary value (Table 2) or citations (Table 7). W ′i are firm-specific knowledge connec-

tions (i.e. H and K) for regressions at the firm level. W ′i are match-specific details (i.e. HMATCH
and FMATCH). In the following subsection I will discuss the results at the firm-level, i.e. how

a firm benefits from diversification and what features of the firm determine the direction of pro-

duction. In the next subsection, I will focus on the specifics of the match with the scientist, which

is crucial to understanding direction and quality of production.

11We do not have demand shocks or aggregate shocks in this framework
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4.1 Firm Level

At the firm level my first question is what drives the direction of idea production? I start with

a discussion of why firms would produce outside of their existing area of expertise and then

expand to thinking about where they would want to expand and what shapes the choices of

their idea production. I find that a) there are benefits to diversification conditional on knowledge

of the relevant field, and b) the decision to operate in a field relies on both scientists at the firm

and the firm’s past history, but most of all on the scientists specifically on the patent.

4.1.1 Expansion and Value

First, I show in which cases entering new fields can create value for a firm. This can be seen in

terms of monetary patent value. I use a dataset from Kogan et al. (2017) dataset which contains

the patent dollar values. Whether a firm is “new” to a field, discussed earlier, has implications

on the value of the patent, once one controls for the firm’s relevant knowledge. This variable has

an impact on patent value, as measured by our first regression. The specification is in equation

(6), where c(p) signifies the class c that patent p belongs to and X includes year fixed effects, firm

size, as well as total people on patent.

LogValuep = β0 + β1New f ,c(p) + β2K f ,c(p) + β3H f ,c(p) + Λ′X + u (6)

Table 1: Patent Value on Firm and Scientist Knowledge and New Field

(1) (2)

Log Value Log Value

New 0.00399 0.261∗∗

(0.08) (3.20)

K f ,c,t 0.0371

(0.53)

H f ,c,t 0.245∗∗

(3.14)

Observations 767494 763381

R2 0.102 0.112

t statistics in parentheses, clustered at the firm level, year fixed effects

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 1 provides the intuition of the consequences of new field expansion for a firm. Con-

ditional on a firm’s distance to an idea (K – firm specific and H – scientist specific), new tech-

nology classes yield higher value patents to the firm. Table 2 indicates that patents produced in

new fields are of higher value conditional on the firm’s knowledge. Patents in new fields are on

average are worth approximately 26% more than patents in “internal” fields, once one conditions

on the relevant firm knowledge. Increasing H, the scientist knowledge relevant to the class at

the firm, from 0 to 1 also increases value of the patent by 25%. Note that this regression does not

control for firm fixed effects, only year and firm size, so it speaks to the cross-section of firms

and their pursuit of new fields.

4.1.2 Time Series

Firms that expand into new markets benefit, conditional on their scientist’s knowledge. Table

3 looks at their concentration in markets depending on their knowledge connection and human

capital connection. With the following regression, I connect their realized region of production

(RC) with their potential regions (K and H).

RC f ,c,t+1 = β0 + β1K f ,c,t + β2H f ,c,t + RC f ,c,t + Λ′X + u (7)

Equation (7) covers a yearly time period speaking to how the stocks of knowledge at the firm

in year t affect production in year t + 1. This regression is testing the strength of the response of

research concentration in a class to two stock variables (the stock of human capital direction and

stock of firm knowledge direction) and one flow variable (research concentration in the previous

period). X controls for firm size (100 percentiles), class and year fixed effects, firm fixed effects.

Table 2 shows the results when I keep all observations.

All variables are standardized the .596 coefficient can be interpreted as: for a one standard

deviation increase in firm specific knowledge as related to class c, there will be an expected .596

standard deviation increase in production in class c in the next period. The effects are strong

for both past patent knowledge and human capital in predicting future realized activity. Note

that both firm and scientist knowledge matter as well as research concentration in the previous

periods.

In Table 3, I keep observations of RC that had 0 concentration in the previous 3 periods. This

gets at the idea of being able to predict new areas using the firm’s knowledge capital. Note

the effect of firm specific knowledge becomes less pronounced, possibly in part because this

represents unchartered territory in terms of production activity. There is still a strong response

to both firm knowledge and science knowledge in terms of class production. The interpretation

of the coefficients is similar to Table 2.
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Table 2: Realized Regions of Production and Potential Regions, all obs

(1) (1) (2) (3)

RC f ,c,t+1 RC f ,c,t+1 RC f ,c,t+1 RC f ,c,t+1

K f ,c,t(SD) 0.596∗∗∗ 0.596∗∗∗ 0.447∗∗∗

(92.48) (91.76) (48.50)

H f ,c,t(SD) 0.374∗∗∗ 0.219∗∗∗ 0.440∗∗∗

(53.04) (21.89) (56.90)

RC f ,c,t(SD) 0.704∗∗∗ 0.178∗∗∗

(81.07) (23.69)

RC f ,c,t−1(SD) 0.239∗∗∗

(39.89)

Observations 12194645 12194645 12194645 8124978

R2 0.335 0.493 0.498 0.577

t statistics in parentheses, clustered by firm-class

All variables are standardized

X are firm size, class, year, fixed effects

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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Table 3: Realized Regions of Production and Potential Regions, RCt → RCt−3 = 0

(1)

RC f ,c,t+1

K f ,c,t, (SD) 0.174∗∗∗

(87.92)

H f ,c,t, (SD) 0.103∗∗∗

(45.55)

Observations 11009009

R2 0.067

t statistics in parentheses, clustered by firm-class

All variables are standardized

X are firm size, class, year, fixed effects

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

4.1.3 Logit

Previous regressions show the value of advancement into new fields and the importance of a

firm’s portfolio and scientist experience in determining the direction. Here, I use a logit model to

examine which firm-level characteristics determine the direction of research, examined again at

the subcategory level. Using the McFadden (1974) method, I hold the key variables determining

class choice constant, but let controls such as firm size and year vary by class.

Denoting P f
c,p ≡ Pr(Π f

c,p > Π f
c′,p∀c′) the probability firm f invents in class c at their next

patent p, where Π signifies the payoff. If the error term has a type I extreme value distribution,

this model can be estimated as a multinomial logit. I run a multinomial logit (reporting the log

odds ratios below) to help explain the variation that determines the firm’s direction. Table 4

provides the results, comparing three forces that can shape the firm on the supply side.

P f
c,p =

exp(x′ijβ)

∑J
h=0 exp(x′ihβ)

xit =


Firm Specific Knowledge Connection

Human Capital Knowledge Connection

Scientists on the Patent
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Table 4: Multinomial Logit on Firm and Scientist Knowledge

(1) (2)

Realized Category Realized Category

K f ,c 0.526∗∗∗ 0.431∗∗∗

(431.15) (210.80)

H f ,c 0.223∗∗∗ -.009∗∗∗

(178.75) (-5.72)

Si,c 0.664∗∗∗

(1119.73)

Observations 49484799 49484799

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

The coefficients in Table 4 can be interpreted as a one-SD increase in X in class C increases

the log-odds of innovation in class C relative to class 1 by β. If the baseline odds of innovating

in class C are 1%, then a 1-SD increase in firm-potential-knowledge will increase the odds of

producing next in class C to 1.53%. These odds are significant and indicate the relevance of the

firm’s past ideas in terms of determining where they can build. Note that this model has a strong

assumption on the error terms taking an extreme-value.

In terms of qualitative results, there are two key takeaways from Table 4. First, both the

firm’s background and their scientists are important for establishing direction. Table 4 suggests

that overall firm knowledge is more important than scientists-at-the-firm knowledge. Second,

individual scientists on the patent are most predictive of direction. Third, when controlling for

the scientists directly on the patent, the collection of scientists at the firm becomes less relevant.

Scientists on the patent play a major role in terms of firm direction. This will be seen from

another angle in the next section. The magnitudes are less important than understanding the

relative weight of individual effects versus general effects and the important role for scientists.

Having established to some degree what determines the firm-level direction, I turn attention

to the specific match that the firm uses to expand. Since the scientist’s place in technological

space seems to be the most crucial element in determining where the firm produces, the match

carries significance.
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4.2 Match Level

In the previous section, I established the link between the firm’s opportunities for expansion

and their direction. I noted that scientists play a major role, and in particular scientists on

the existing patent. I now delve further into the firm-scientist match to think about how the

individual contributes to the firm’s goals. This data uses each f irm × scientist × patent level,

which contains around 6 million observations from 1976-2002.

Two measures of match rely on two definitions of the firm–FMATCH, the match between

ideas produced by the firm and the particular scientist in question, and HMATCH, the match

between ideas produced by the scientists in the firm and the particular scientist in question, to

quantify the relationships between firms and scientists. These measures will inform our analysis

on both direction and quality of ideas.

A further match between scientist and firm (i.e. less similar past in terms of realm of ideas)

leads to more external expansion. It also leads to benefits in patent impact, but this is conditional

on the link between the scientist on the patent and other scientists at the firm. There are benefits

to having this scientist close to existing scientists at the firm. The regressions in this section have

the same form as discussed in the beginning of section 4.

4.2.1 Direction of Innovation

In this section, I focus on how the match drives advancement into new fields. A further and

newer match is more likely to generate a patent in a new field related to the firm. When firms

aim to expand, their existing stock of scientists are less likely to know about technologies outside

the firm. This will lead to new matches. First I evaluate the role of the match in expansion.

The following regression, with results in Table 5, is done at the patent level, where the firm

and inventor come together to match on the specific patent. The LHS variable, New, measures

whether or not the firm is entering a new field (i.e. equals 0 or 1) and is discussed above. This

work can be extended to an intensive margin measure but for now it is binary.

Newc(p), f = β0 + β1FMATCHp( f ,i) + β2HMATCHp( f ,i) + Λ′X + u (8)

Where X is a set of controls for firm, firm size (100 percentiles of firm size), individual experience,

class, year.

As seen in Table 5, when firms enter a new field, they are more likely to do it with someone

who has less overlap with the firm. The coefficient measures the increased probability of entering

a new field for a firm given a one-standard deviation increase in breadth. Because of firm

fixed effects, the variation is occurring in direction and quality is from within the firm. The

interpretation of column (1) is that for a one standard deviation decrease in the match there

is around a 2.3 percentage point increase in probability of innovation, which, given that the

probability of a new field entry is around 5 percent, is quite sizable–an increase from the mean
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Table 5: Firm Entering New Field and Match Characteristics

(1) (2) (3) (4)

New New New New, 1st patent

FMATCH (SD) -0.023∗∗∗ -0.022∗∗∗ -0.031∗∗∗

(-30.99) (-22.72) (-20.78)

HMATCH (SD) -0.018∗∗∗ -0.001 0.002

(-27.07) (-1.01) (1.33)

Observations 3219083 3140884 3140884 277342

R2 0.086 0.086 0.087 0.135

t statistics in parentheses, clustered by firm, ∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

FMATCH: Match between scientist and past ideas from the firm

HMATCH: Match between scientist and human capital at firm

X: Firm, Class, Firm Size, People on Patent, Year

“New”= ≤5th percentile in Research Concentration, controlling for firm size

of above 40%. A low FMATCH is the key element driving expansion, in particular in column (3),

where both HMATCH and FMATCH are included, and (4) where they are both included and

only an individual’s first patent with the firm is kept.

Figure 1 illustrates two forces. First, the probability of expanding into a new class is de-

creasing in the patent number of the scientist-firm pair. Second, scientists further from the firm

technologically are more likely to bring the firm into new technologies. Newer scientists and

further scientists are both more conducive to innovation further from the firm. This comple-

ments the work of March (1991), who discussed the key roles that new scientists with different

knowledge sets play in allowing a firm to engage in more exploratory innovation.
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Figure 1: Probability of entering new field decays with the length of the match

4.2.2 Quality of Match

After verifying the connection between expansion and the importance of scientists to broaden the

technological expertise of the firm, I look to the quality of the match. Quality can be measured

in many ways; I treat this as citations (impact) and number of patents the match produces.

We have seen that the individual scientist is crucial for mapping out the direction of the firm

(both from the logit model and at the match level). However, how does the firm ensure that this

match will yield quality? It is possible that a match will help a firm expand into new fields, but

if it produces weak ideas, the expansion will yield little in opening up areas for advancement.

Table 6 shows that patents have higher impact if the FMATCH has less overlap, where the

individual is adding new knowledge relative to the firm. This regression uses the match level

characteristics, with the scientist’s first ten patents at the firm, to speak to the effectiveness of the

match on patent quality (e.g. citations). I do not only include the scientist’s first patent with the

firm because this reduces the number of observations. The following regression encompasses the

question of match, looking very similar to equation (8).

LogCitp = β0 + β1FMATCHp( f ,i) + β2HMATCHp( f ,i) + Λ′X + u (9)
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I find that a scientist working on areas distant from the firm’s original portfolio will be more

effective in idea production at the firm. However, this is conditional on a scientist working

predominantly in areas with other scientists at the firm, where good overlap will deliver patent

value. A 1 SD decrease in FMATCH increases citations by around 5%, conditional on keeping

the scientist-human capital match constant. If that match can increase while FMATCH decreases,

a firm can generate big gains in citations.

Table 6: Patent Impact on Match Chacteristics

(1) (2) (3) (4)

LogCit LogCit LogCit LogCit

FMATCH (SD) -0.048∗∗∗ -0.053∗∗∗ -0.051∗∗∗ -0.041∗∗∗

(-3.42) (-4.59) (-4.65) (-4.07)

HMATCH (SD) 0.063∗∗∗ 0.047∗∗∗ 0.044∗∗∗ 0.032∗∗∗

(5.27) (4.16) (4.26) (3.46)

Observations 1446727 1446727 1446727 1446727

R2 0.130 0.182 0.185 0.207

Class Fixed Effects X X X X

Firm Fixed Effects X X X

Firm Size Fixed Effects X X

Year Fixed Effects X

t statistics in parentheses, errors clustered by firm

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

When considering the number of patents with the firm as relevant for match value, a closer

match yields more value. Panel (a) in Figure 2 illustrates that the closer the firm and scientist

are, the more lasting the match. However, once I control for the match between scientists and

the human capital at the firm, this relationship goes away as seen in panel (b). The closeness

between scientists at the firm and other scientists at the firm matters, as seen in panel (c).12 This

speaks to similar facets of the regression: the scientist-human capital match is more important

for generating quality. A firm’s character can more easily change to adapt the existing scientists,

but scientists at the firm need a good degree of overlapping communication to produce strong

ideas and lasting relationships.

12These are residual scatter plots, so in panel (a) I control for firm fixed effects, deciles for firm size, year, class.
in panel (b) I control for the same variables except add in the firm-scientist closeness. In (c),I control for firm ideas-
scientist match and all other variables.
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Figure 2: The Role of the Match in # Patents with Firm

Firm-Specific Match

(a)

Firm-Specific Match, Residuals

(b)

Human Capital Match, Residuals

(c)
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Overall, I stress a couple features of the relationship between firm and scientist. The match

between firm and scientist is important, but it is more important that there is a positive match

between the scientist and the existing scientists at the firm. This yields value at both patent

level and in number of patents with the firm. If an individual has a good match with the firm’s

scientists, they can also yield more value if they operate in different areas from the firm’s central

product lines.

Going back to the firm-level analysis, these results speak to the importance of the match both

in direction and quality of research. The firm, through their stock of scientists and knowledge,

seek a direction that requires the scientist on the patent to have some overlap with the firm’s

knowledge base, but enough difference to expand.

5 Conclusion

This paper illustrated the importance of understanding a firm’s paths to expansion through a

firm’s interaction with their collection of scientists of stock of ideas. I showed that the path of

firms into technology classes depends significantly on the firm’s connection to patent classes as

dictated by its past patent production and its current collection of scientists at the firm. Firms

more often produce in new fields with new scientists and these scientists are different than

the firm in terms of the knowledge they have connections to – but less different from existing

scientists at the firm.

Firm expansion is inextricably linked to both their past and the people they find in order to

expand. One can imagine many reasons for the links between firm expansion and their existing

technological stock. Firms exist in certain product lines and past production has given them

some insight that later a firm realizes can be applied in a certain way. Once firms find new

idea potential related to their old ideas, it’s crucial that the people operationalizing those new

ideas understand the field. In this scenario, it will often be the case that there are gains to firms

in finding new scientists who don’t overlap so directly with the firm’s past ideas. The returns

to these scientists in having a close past with the existing scientists at the firm indicates the

importance of teamwork. Understanding the firm as a collection of teams to explore these the

links between firms and technologies are fruitful avenues for further research.
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A1. Appendix: More Figures and Tables

Figure 3: Patent Citations and Patent Value, Kogan et al 2016

In the data, firms take different paths to expansion. Some stay in relatively few technology

markets and some expand into many markets. In the model I have not discussed much on firm

heterogeneity, but it is clearly an important element of the discussion.

Two types of firms at their 100th patent illustrate how one firm can go a route of greater

dispersion across classes and another can stay within certain specific classes. Below is Ford

Technologies and International Fragrances and Flavors relative presence across 37 technology

categories:
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Figure 4: An Example of 2 Firms Class Intensity

Ford Technologies is active in many patent classes, i.e. motors, computers etc. On the

other hand, International Flavors and Fragrances stays mostly in sectors like organic compounds.

Given the benefits to diversification, a firm like Ford Technologies is more likely to survive and

expand over time.

We want to think about what it means for a firm to operate in a new market. Below I

categorize a “new” field measures whether or not the firm is entering a new field (i.e. equals 0

or 1). I define this as the bottom 5th percentile in realized research concentration in region of

the patent, conditional on firm age. The graph below indicates that the bottom 5th percentile is

increasing in firm size (as firms get more dispersed they enter fewer classes where they have 0

research concentration).
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Figure 5: Research Concentration in a “new” field

6 A.2. Sketch of a Model

Entrants attempt to enter the market, grabbing any product line they can. Incumbents also

innovate, but must be careful to not cannibalize their own production too much or grab a product

line that is not in line with firm valuation. The tradeoff is in getting a product that is close enough

to the firm’s knowledge base while being far enough that it doesn’t simply take from the firm’s

previous market share.

6.1 A2.1. Static Framework

A product line, qj, has some value to the firm as it holds a degree of monopoly power on

its product. The firm’s ability to extract resources from this product line is a function of the

knowledge base of the firm relative to that product, decreasing in distance, dj. A firm gets a flow

from each product line, depending on technology level and the firm’s ability to hold:

Π(qj) = π × qj︸︷︷︸
determined by quality of innovation

× (1− dj)︸ ︷︷ ︸
determined by knowledge at the firm level
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6.2 A2.2. Dynamic Framework

The flow payoffs from holding product lines sets up opportunities for research and development.

As in Klette-Kortum and Akcigit-Kerr, firms innovate in step sizes on products. Thus there will

be three relevant components relevant for a firm’s expansion. First, there is the product lines

existing quality at time t, qj(t). If the firm holds product line j this is partially the result of their

past innovation

Thus innovation targeted to product line j delivers:

If qj /∈ Ff :

max
ze

{
zV(q ∪ (1 + s)qj(1− dj))− Czσ

e

}
If qj ∈ Ff :

max
zi

{
zV(q ∪ (1 + s)qj(1− αdj) \ qj(1− dj))− Czσ

i

}
With α < 1. This gets at the idea that the more a firm innovates on a product line the better it

understands the field. The question of whether the firm decides to target an internal or external

product line has to do with the relationship of (1+ s)qj(1− dj) and (1+ s)qj(1− αdj) \ qj(1− dj).

We can now evaluate the key tradeoff at the firm level: direction and quality. There are two

components of direction. A firm can hire a worker/scientist to work to innovate on an existing

product line, or they can hire a worker to go onto another product line. This speaks to the

question of direction. This also speaks to another issue. Firms may be more willing to take a hit

in quality of innovation when they are expanding into new fields. Will a firm stay put or attempt

to advance into new lines? The quality question comes when we think of the step size–what is

the scientist adding to the existing qj?

This simple framework helps motivate us to think about the mechanisms suggested by the

paper, but does not attempt to be used for any sort of structural estimation.

A2.3. Profit in a Specific Market

There is a single final good Y(t) which is used for R&D and produce with fixed labor, L, inter-

mediate goods, k j(t), and technology or quality level qj(t) across a measure 1 of product lines.

Y(t) =
Lβ(t)
1− β

∫ 1

0
qβ

j (t)k
1−β
j (t)dj (10)

And they pay for the intermediate good held by j, pj(t)k j(t). =

From this I have the inverse demand for the intermediate good:

pj(t) = Lβ(t)qβ
j (t)k

−β
j (t)

Let us take firm f with j product lines, dropping t from the rest of the model. Each product
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line has quality qj that can be improved upon with innovation. While attempting to innovate,

each individual product line benefits from monopoly power, producing their intermediate good

using technology k j = q̄lj where q̄ ≡
∫ 1

0 qjdj. On each product line they decide to price, and

intermediate good capital such that:

Π(qj) = max
k j,pj

{
pj(1− dj)

βk j −
w
q̄

k j

}

Π(qj) = max
k j≥0

{
(1− dj)

βLβqβ
j k1−β

j − w
q̄

k j

}
Solving for k j and plugging in:

k j =

[
(1− β)q̄

w

] 1
β

L(1− dj)qj

Plugging in for optimal k j, I get the profit for firm j.

Π(qj) = πqj(1− dj)

Where π ≡ L(q̄/w)
1−β

β (1− β)
1−β

β β

A3. Robustness Checks

A3.1 Akcigit et al. (2016) Measure

As discussed earlier, we have another measure of distance to classes from a firm that varies with

firm size and is about the complementarity in production of ideas–this is the Akcigit et al. (2016)

proximity measure. Using proximity, we get similar results at Tables 3+4, in terms of where a

firm will go based on their past production.

We also see the results in citations:
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Table 7: Into Fields

(1) (2) (3)

RC f ,c,t+1 RC f ,c,t+1 RC f ,c,t+1, =0 for 3 past periods

K f ,c,t 0.613∗∗∗ 0.609∗∗∗ .188∗∗∗

(88.23) (89.85) (50.46)

H f ,c,t .379∗∗∗ 0.156∗∗∗ 0.055∗∗∗

(51.02) (20.10) (32.47)

RC f ,c,t 0.252∗∗∗

(53.34)

Observations 12174961 12174961 11097858

R2 0.483 0.484 .022

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 8: Citations on Firm and Scientist Knowledge

(1) (2) (3) (4)

LogCit LogCit LogCit LogCit

FMATCH (Prox) -0.172∗∗∗ -0.172∗∗∗ -0.167∗∗∗ -0.138∗∗∗

(-3.85) (-4.39) (-4.34) (-3.61)

HMATCH (Prox) 0.277∗∗∗ 0.200∗∗∗ 0.192∗∗∗ 0.152∗∗∗

(6.99) (5.34) (5.22) (4.26)

Observations 1446812 1446812 1446812 1446812

R2 0.130 0.184 0.185 0.207

Class Fixed Effects X X X X

Firm Fixed Effects X X X

Firm Size Fixed Effects X X

Year Fixed Effects X

t statistics in parentheses

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001
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A3.2 Keeping Only US firms

When we only keep US firms, we still get the importance of history for advancement into new

fields. This can be seen in Table 10 below.

Table 9: New Field on Firm and Scientist Knowledge, US Only

(1) (2) (3) (4)

new new new new

FMATCH -0.0976∗∗∗ -0.102∗∗∗ -0.145∗∗∗

(-28.22) (-16.51) (-15.38)

HMATCH -0.0997∗∗∗ -0.00445 0.0324∗∗∗

(-25.04) (-0.93) (3.61)

Observations 1098060 1088444 1088444 132301

R2 0.070 0.096 0.098 0.156

t statistics in parentheses, errors clustered by firm

Controls for firm, firm size, class, year, individual fixed effects

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

But we see the significance of match for citations go away in the specific case where we have

fixed effects for class, year, firm, firm size. This can be seen in Table 11 below.
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Table 10: Citations on Firm and Scientist Knowledge

(1) (2) (3) (4)

LogCit LogCit LogCit LogCit

FMATCH -0.0746 -0.141∗∗ -0.137∗∗ -0.0860

(-1.24) (-2.92) (-2.87) (-1.82)

HMATCH 0.149∗ 0.119∗ 0.109∗ 0.0264

(2.36) (2.30) (2.17) (0.55)

Observations 689392 689392 689392 689392

R2 0.148 0.209 0.211 0.238

Class Fixed Effects X X X X

Firm Fixed Effects X X X

Firm Size Fixed Effects X X

Year Fixed Effects X

t statistics in parentheses, errors clustered by firm

∗ p < 0.05, ∗∗ p < 0.01, ∗∗∗ p < 0.001

Table 11: Variables–Useful in Results section

Variable Mean SD [Min,Max]

Firm unique tech-categories at patent 100 12.08 4.57 [1,29]

Citations 4.11 8.18 [0,447]

Patent Value ($) 13.6M 41M [100,3401M]

Firm Class Connection Ki,c 0.19 0.21 [0,1]

Scientist Class Connection Si,c 0.20 0.21 [0,1]

Research Concentration, firm (RC f ,c) 0.23 0.24 [0,1]

Research Concentration, scientist (RCi,c) 0.51 0.40 [0,1]

Firm ideas-scientist match (FMATCH) 0.62 0.19 [0,1]

Human capital-scientist match (HMATCH) 0.62 0.18 [0,1]
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